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Abstract
Iterative Quantization (ITQ) is one of the most
successful hashing based nearest-neighbor search
methods for large-scale information retrieval in the
past a few years due to its simplicity and superior
performance. However, the performance of this al-
gorithm degrades significantly when dealing with
noisy data. Additionally, it can barely facilitate a
wide range of applications as the distortion mea-
surement only limits to `2 norm. In this paper,
we propose an ITQ+ algorithm, aiming to enhance
both robustness and generalization of the original
ITQ algorithm. Specifically, a `p,q-norm loss func-
tion is proposed to conduct the `p-norm similari-
ty search, rather than a `2 norm search. Despite
the fact that changing the loss function to `p,q-
norm makes our algorithm more robust and gener-
ic, it brings us a challenge that minimizes the ob-
tained orthogonality constrained `p,q-norm func-
tion, which is non-smooth and non-convex. To
solve this problem, we propose a novel and efficien-
t optimization scheme. Extensive experiments on
benchmark datasets demonstrate that ITQ+ is over-
whelmingly better than the original ITQ algorithm,
especially when searching similarity in noisy data.

1 Introduction
Similarity search is of great importance to applications in
various areas, such as data mining [Altman, 1992], machine
learning [Cheng et al., 2015], information retrieval [Furnas
et al., 1988], and etc. Formally, given a database D =
{x1, ...,xn}, similarity search is to find those instances that
most closely resemble a query xq based on a similarity or
distance measure d(xq,xi), e.g., Euclidean distance. The
small-database case is well solved, however, the cost of com-
puting the distance between the query and all database in-
stances becomes prohibitively high in the case that the ref-
erence database is huge. To address this problem, hashing
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based methods [Gionis et al., 1999; Andoni and Indyk, 2006]
are proposed, which transform the data from a real-value rep-
resentation into a sequence of binary bits. The binary repre-
sentation and those bit-wise operations make computing the
Hamming distance between binary codes extremely efficient
in a modern CPU architecture [He et al., 2013], therefore en-
abling a fast nearest neighbor search. Such a procedure can
be considered as a means for transforming high-dimensional
feature vectors to a low-dimensional Hamming space, while
retaining the original similarity structure of data as much as
possible. In this way, the original distance d(xq,xi), thanks
to the similarity preservation, can be effectively approximated
by the Hamming distance dh(bq,bi) between binary codes.

Locality Sensitive Hashing (LSH) [Gionis et al., 1999],
as the seminal work, adopts random split to generate bina-
ry codes. Although enjoying asymptotic theoretical benefits,
LSH needs long codes for a good performance because of it-
s data-independent [Zhang et al., 2010] property. To obtain
compact binary codes, many machine learning techniques are
exploited [Wang et al., 2014]. Among all, Iterative Quanti-
zation (ITQ) [Gong et al., 2013] that aims to minimize the
distortion between binary codes and the original features, has
shown the state-of-the-art performance for learning `2-norm
similarity-preserving binary codes, and thus ITQ has been u-
tilized in information retrieval, image classification, and etc.

1.1 Problem Statement
The extraordinary performance and a large number of the
follow-up works [Ge et al., 2014; Zhang et al., 2014; Kong
and Li, 2012; Xu et al., 2013] motivate us to closely investi-
gate the ITQ algorithm. Specifically, the objective of ITQ is
to learn the binary representation and an orthogonal rotation
matrix R ∈ Rk×k which minimizes the distortion as follows,

min
bi,R

OITQ =
∑n

i=1
‖bi − xiR‖22, s.t. RR′ = I, (1)

where bi ∈ {−1, 1}k is the binary representation of xi, k is
the length of binary codes and I is the identity matrix. With-
out loss of generality, hereafter we assume the data is zero-
centered, i.e.,

∑
i xi = 0. A close look at the objective func-

tion reveals that a squared `2 loss is applied to measure the
distortion. But unfortunately, this sort of distance measure-
ment comes with certain vulnerabilities. For instance, there
are noise and outliers in real-world datasets but the squared
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Figure 1: ITQ does not perform well with the noisy data (left)
and can not deal with some other similarity measures (right).

loss is sensitive to them because their large distortion may
dominate the sum of the squared loss [Huang et al., 2013;
Pan et al., 2014; Jiang et al., 2015], which may markedly
degrade the quality of binary codes. Solving this problem
becomes important when we need to search nearest neigh-
bors for data in the wild, such as Flickr images and Youtube
videos, as the noises are commonly existed. To verify our
observation, we carried out an experiment based on SIFT1M
dataset, in which the noise is manually added into the data
and we plot the similarity search performance of ITQ w.r.t.
the noise ratio. As can be seen from Figure 1(a), the perfor-
mance of ITQ degrades significantly even with only 1% of
noise. Additionally, ITQ works pretty well for `2-norm sim-
ilarity search, i.e., d(xq,xi) = ‖xq − xi‖2 but not for the
other measurements like a Manhattan distance d(xq,xi) =
‖xq − xi‖1 [Singh and Jain, 2010]. In practice, the preferred
measure means may need to be defined by users depending on
the application. This indicates that a good similarity search
algorithm should be generic enough to deal with different dis-
tance measurements. Again, to demonstrate this, we plot the
`1-norm distortion w.r.t. the number of iterations of ITQ, as
shown in Figure 1(b). It can be observed that the distortion
keeps increasing with more iterations. This phenomenon re-
veals that the distance approximation gets worse such that
more iterations might result in worse similarity search result.

1.2 Our Contributions
Aiming to address the two problems mentioned above, we in-
tend to develop an improved ITQ algorithm, in which both
robustness and generalization are enhanced by using a `p-
norm distance. Recent studies have shown that the q-th order
(q < 2, especially q ≤ 1) of `2 loss, i.e., ‖bi − xiR‖q2, is
more robust to the noise and outliers in data than the squared
loss [Wright et al., 2009; Wang et al., 2013]. Based on the tri-
angle inequality, preserving `p-norm distance can be achieved
by minimizing the `p-norm distortion, i.e., ‖bi − xiR‖p.
Therefore, in this paper, we propose a `p,q-norm loss func-
tion for learning robust `p-norm similarity-preserving binary
codes, termed as ITQ+. In Figure 1, we exhibit the effective-
ness of ITQ+, in contrast to the original ITQ algorithm. In
summary, the major contributions of this paper are two folds.

• We propose a new `p,q-norm loss for binary-code learn-
ing. It is robust to noise by using a small q and supports
`p-norm (p ≤ 2) similarity search with the `p-norm loss.

• To minimize the orthogonality constrained `p,q-norm

function, a novel and efficient iterative optimization al-
gorithm is proposed and its convergence property is the-
oretically investigated. To the best of our knowledge, it
is the first work that provides the theoretical solution to
this challenging non-smooth and non-convex problem.

In addition, it is worthwhile to highlight two important prop-
erties of the ITQ+ algorithm from the application perspective.
• ITQ+ is resistant to the noise, enabling us to search sim-

ilarity in wild data. Such an algorithm is favorably de-
manded by the applications like Internet image retrieval.

• Our algorithm is more generic in the sense that multiple
distortion measurements are implemented in one frame-
work, allowing us to facilitate a wide range of applica-
tions in which different measurements may be requested.

2 The Proposed Method
2.1 Objective Function
As we mentioned before, the algorithm can be enhanced if
we make the squared loss less sensitive to the noise. In
this paper, we adopt a widely used method that replaces the
squared loss by the the q-th order loss. It has been shown
in the literatures [Wright et al., 2009; Huang et al., 2013;
Wang et al., 2013] that the loss function is more robust to
noise and outliers in data in case of q < 2, especially q ≤ 1.
Inspired by the idea, we reformulate the objective function of
ITQ in Eq. (1) from the squared loss to the q-th order loss as

min
bi,R

OITQ =
∑n

i=1
‖bi − xiR‖q2, s.t. RR′ = I. (2)

Denote Q(x) as the quantization result of x. Based on the
vector norm property, we obtain two inequalities as follows,

|‖x− y‖p−‖Q(x)−Q(y)‖p| ≤ K1‖x− y −Q(x) +Q(y)‖p
≤ K2(‖x−Q(x)‖p + ‖y −Q(y)‖p),

where ‖x‖p = (
∑

j |xj |p)
1
p denotes the `p norm of a vec-

tor. The above inequalities are based on the triangle inequal-
ity. From these inequalities, we can observe that with s-
maller distortion (‖x−Q(x)‖p), the distance between Q(x)
and Q(y) can accurately approximate the distance between
x and y [Ge et al., 2014; Zhang et al., 2014]. Further-
more, in the extreme situation where the distortion is 0, we
have ‖Q(x) − Q(y)‖p = ‖x− y‖p. Fortunately, the binary
codes used in the hashing algorithm are exactly the quantiza-
tion result of original features. Therefore, to learn `p-norm
similarity-preserving binary codes, we need to minimize the
`p-norm distortion. Here, ITQ can be considered as a special
case (p = 2) of our scheme . To clarify it, we can rewrite
the objective function in Eq. (2) from the `2-norm loss to the
`p-norm loss, which leads to the objective function of ITQ+:

min
bi,R

OITQ+ =
∑n

i=1
‖bi − xiR‖qp, s.t. RR′ = I. (3)

2.2 Learning Algorithm
Changing to a `p,q-norm loss is not difficult, but minimizing
obtained orthogonality constrained `p,q-norm is non-trivial s-
ince it becomes a non-smooth and non-convex optimization



problem when p ≤ 1 or q ≤ 1. Solving this problem is
much more difficult than minimizing the `2,2-norm in ITQ,
for which many solutions are available [Gong et al., 2013].
To solve our problem, we propose an efficient iterative opti-
mization algorithm, which can be decomposed into two parts:

Fix R and update bi. Similar to ITQ, the problem that
arises in Eq. (3) can be optimized w.r.t. every element in bi

individually, which reduces the optimization problem below

min
bij
Oij = |bij − xiR∗j |, s.t. bij ∈ {−1, 1}. (4)

The solution for the above problem can be written as follows:

bij ← sign(xiR∗j). (5)

Here, sign(x) = 1 if x ≥ 0 or −1 otherwise. It is an explicit
hashing function for the out-of-sample data1. Hence, given a
new data x, we can adopt Eq. (5) to generate its binary codes.

Fix bi and update R. This is the most difficult part in the
entire solution, because the `p,q norm is neither smooth nor
convex, and meanwhile, the orthogonality constraint limits
the feasible set. To solve it, we rewrite the complicated `p,q-
norm problem into a weighted `2,2-norm problem as below,

min
RR′=I

O =

n∑
i=1

‖wi◦(bi−xiR)‖22 = ‖W◦(B−XR)‖2F , (6)

where X = [x1; ...;xn] are the original training features,
B = [b1; ...;bn] are the binary codes. W = [w1; ...;wn] is
the weighting matrix, ‖ · ‖F is the Frobenius norm of matrix,
and “◦” represents the element-wise multiplication operation.
In our algorithm, the weighting matrix is defined as follows

fi = ‖bi − xiR‖q−pp , gij = |bij − xiR∗j |p−2

wij = (figij)
0.5.

(7)

Based on the above definitions, it is easy to verify that Eq.
(6) is equivalent to Eq. (3). Now, if we fix W, solving the
weighted `2,2-norm problem is much easier than the origi-
nal problem since it is a smooth and convex function. The
only challenge left in this problem is to solve the orthogonal-
ity constraint. To address this issue, in this paper, we adopt
the optimization algorithm proposed in [Wen and Yin, 2013],
which starts by computing the gradient ofO w.r.t. R as below

G =
∂O
∂R

= X′(W ◦W ◦ (XR−B)). (8)

Next, we construct a skew-symmetric matrix based on G as

A = GR′ −RG′. (9)

Having obtained G, the next step is to search the sequential
point using the Crank-Nicolson-like scheme [Goldfarb et al.,
2009; Vese and Osher, 2002], which is described as follows

Rt+1 = Rt − τA(
Rt+1 +Rt

2
), (10)

where τ is the step size. The solution to Eq. (10) is given by

Rt+1 = (I+
τ

2
A)−1(I− τ

2
A)Rt. (11)

1The out-of-sample data is the one that is not in the training set.

Algorithm 1 Learning ITQ+
Input: Centered training data X;

Parameters p ≤ 2 and q ≤ p;
Output: Orthogonal matrix R;

1: Initialize R = I, and B = sign(XR);
2: repeat
3: Update bij with Eq. (5);
4: Construct weighting matrix W by Eq. (7);
5: Update R with Eq. (8)(9)(11);
6: until Convergence.
7: Return R;

The objective function value in Eq. (6) will keep decreasing
w.r.t. the updating rule in Eq. (11) until the stationary point is
achieved. Note that Rt+1 satisfies the orthogonal constraint
(detailed proof can be found in [Wen and Yin, 2013]). We
update R by fixing W as we can see that W depends on R.
Therefore, the updates of R and W can be implemented by
an iterative strategy, which can be described in Algorithm 1.

2.3 Convergence Analysis
In this subsection, we will prove that the objective function
value in Eq. (3) is non-increasing at each iteration of Algo-
rithm 1, and is guaranteed to converge at the local optimum.

First, let us make it clear that OITQ+ is obviously non-
increasing w.r.t. the updating rule for bij in Eq. (5) because it
is the global optimum given R. Now, we need to prove that
OITQ+ is non-increasing under the updating rule in Eq. (11).
Lemma 1 1 Given any a > 0 and 0 < b ≤ a, for ∀x ≥ 0,
we have the inequality: axb − bxa + b− a ≤ 0.

Proof 1 Denote c = b/a and f(x) = xc−cx+c−1. Appar-
ently, f(1) = 0. Then, we have f ′(x) = cxc−1 − c ,leading
to f ′(1) = 0. In addition, f ′′(x) = c(c − 1)xc−2 ≤ 0 when
x ≥ 0 because 0 < c ≤ 1. This implies f ′(x) ≥ 0 ∀x ∈ [0, 1]
and f ′(x) ≤ 0 when x > 1. Therefore, f(x) ≤ f(1) = 0.
Finally, we can obtain af(xa) = axb − bxa + b− a ≤ 0.�

Theorem 1 The objective function OITQ+ is non-increasing
under the updating rule for R in Eq. (11).

Proof 2 Let Y = B−XRt, Z = B−XRt+1, we have

Ot
ITQ+ =

n∑
i=1

(

k∑
j=1

|yij |p)
q
p ,Ot+1

ITQ+ =

n∑
i=1

(

k∑
j=1

|zij |p)
q
p . (12)

Based on the proof in [Wen and Yin, 2013], we know that
Eq. (11) can decrease the value of O in Eq. (6), i.e., we have∑

ij

figijz
2
ij ≤

∑
ij

figijy
2
ij . (13)

Now if we set a = 2, b = p, x will be |zij |/|yij |. Based on
the Lemma 1 above, we can obtain the following inequalities

2(
|zij |
|yij |

)p − p(
|zij |
|yij |

)2 + p− 2 ≤ 0

⇒|zij |p −
p

2
|yij |p−2|zij |2 ≤ |yij |p −

p

2
|yij |p−2|yij |2

⇒
∑
ij

fi(|zij |p −
p

2
gijz

2
ij) ≤

∑
ij

fi(|yij |p −
p

2
gijy

2
ij).

(14)
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Figure 2: Performance w.r.t. the noise ratio. We set q = 1 for ITQ+.

Combining inequalities (13) with (14) will bring us∑
i

fi‖zi‖pp =
∑
ij

fi|zij |p ≤
∑
ij

fi|yij |p =
∑
i

fi‖yi‖pp. (15)

Denote a = p, b = q, and x = ‖zi‖p/‖yi‖p, then we get

p(
‖zi‖p
‖yi‖p

)q − q(
‖zi‖p
‖yi‖p

)p + q − p ≤ 0

⇒‖zi‖qp −
q

p
‖yi‖q−p

p ‖zi‖pp ≤ ‖yi‖qp −
q

p
‖yi‖q−p

p ‖yi‖pp

⇒
∑
i

(‖zi‖qp −
q

p
fi‖zi‖pp) ≤

∑
(‖yi‖qp −

q

p
fi‖yi‖pp).

(16)

Again, if we combine inequalities (15) with (16), we obtain

Ot+1
ITQ+ =

∑
i

‖zi‖qp ≤
∑
i

‖yi‖qp = Ot
ITQ+, (17)

which ends the proof to Theorem 1. �

We have the following inequalities with the above proofs:

OITQ+(Bt,Rt) ≥ OITQ+(Bt+1,Rt) ≥ OITQ+(Bt+1,Rt+1)

which states that OITQ+ is non-increasing with Algorithm 1.

3 Experiment
3.1 Datasets and Metrics
To demonstrate the effectiveness of ITQ+, we carried out
comprehensive experiments for similarity search. In this pa-
per, we adopt two widely used benchmark datasets. The first
one is SIFT1M [Jégou et al., 2011] which consists of 128-
dimensional SIFT [Lowe, 2004] descriptors. It is made up
of 1 million base vectors, 10, 000 query vectors and 100, 000
vectors for training. The second dataset is GIST1M [Jégou et

al., 2011] which contains 960-dimensional GIST [Oliva and
Torralba, 2001] descriptors. This dataset contains 1 million
base vectors, 1, 000 query vectors and 500, 000 for learning.

Following the settings in [Gong et al., 2013; He et al.,
2013], we use Recall@R as the metric to evaluate the sim-
ilarity search performance, which reflects the ratio between
the number of the true positives in the first R retrieved points
based on Hamming ranking and the total number of true pos-
itives. More precisely, the true positives for each query are
the 10 nearest neighbors of the query in the base by running
a brute-force linear scan measured by the `p-norm distance.

In addition, following the setting in [Jegou et al., 2010;
Gong et al., 2013], we first centralize the data and perform
a PCA to reduce the feature dimensionality to the length of
binary codes. Afterwards, the rotation matrix R is learned
from the reduced data. The binary codes are generated by a
sign function after rotation. In addition, we repeat each exper-
iment for 50 times and the average performance is reported.

3.2 Robustness Study
We firstly investigate the robustness of ITQ+ against the noise
and outliers. To better investigate this property, we have man-
ually added some noise to the data, where each dimension of
each noisy point is sampled randomly from 100 × N (0, 1).
This also implies that the distribution of noise is not as same
as that of the original data. To understand the boundary of the
algorithm, we continuously change the noise ratio (NR: the
ratio between noisy points and original points), and evaluate
the `2-norm similarity search performance of different meth-
ods. For ITQ+, we consistently set q = 1 when comparing
to ITQ. The results of ITQ+ and ITQ on two datasets with
different binary code lengths are shown in Figure 2. It can be
observed that our ITQ+ is overwhelmingly better than ITQ
at all the situations in terms of the Recall. On average, we
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Figure 3: Performance w.r.t. q.

have improved the recall of the original ITQ by 12.2% when
NR = 5%. It is worthwhile to point out that the results actu-
ally demonstrate the following properties of our algorithm.

ITQ+ performs observably better than ITQ even when ap-
plying to the original data (no manual noise; NR = 0). The
major reason is that the data are from the real-world dataset,
on which the noises and outliers have existed. Therefore,
it turns out that noisy data and outliers in the real-world
dataset are indeed influential in the performance of ITQ be-
cause their large errors may dominate the total distortion due
to the squared loss. In contrast, in ITQ+, we adopt the q-th
(q < 2) order loss function that can effectively suppress the
effect of noisy data and outliers as the learned parameters can
better capture the intrinsic information in the dataset. In other
words, our ITQ+ is better suited to deal with data in the wild.

When NR gets increased, the similarity search perfor-
mance of ITQ degrades rapidly. This phenomenon once again
demonstrates that ITQ is sensitive to noise and outliers in da-
ta because of the squared loss, as we have mentioned before.
On the contrary, ITQ+ shows very stable performance in most
cases when we increase NR. More importantly, it can be seen
that the performance gap between ITQ+ and ITQ becomes
even larger when increasing NR. This again demonstrates the
superior robustness of the proposed ITQ+ against the noise.

3.3 Effect of Parameter q
There is one important parameter q in ITQ+. Here, we inves-
tigate how the algorithm will behave when varying q. To do
so, we change the value of q and plot the corresponding per-
formance of ITQ+ on both datasets with different binary code
lengths and noise ratios. The results are illustrated in Figure
3. It is noticed that ITQ is a special case of ITQ+ when q = 2.
We can get the following observations based on the results.

Firstly, in all settings, we can find a Bell-shape curve for

ITQ+. Basically, the model is affected by both noise and nor-
mal data. With a large q (say, q > 1.5), ITQ+ will increase
the weight of those large-distortion entries such that the mod-
el will be biased by them. Unfortunately, due to the existence
of noisy entries and their large distortions, the learned model
will deviate significantly to fit the outliers from the one which
best suits to the normal data. Therefore, the performance of
ITQ+ degrades significantly when we increases q from 1.5 to
2, especially in more noisy settings, e.g., NR = 5%. On the
other hand, if q is too small (say,q < 0.5), we cannot obtain
good results either. According to the principle, the difference
between normal and noisy data becomes smaller in this case,
though the effect of outliers is suppressed. In the extreme
case where q = 0, every entry has the same distortion 1 such
that any model is the solution for this case. Thus, it is almost
impossible to find the optimal model for normal data. This in-
terprets why ITQ+ performs worse when we decrease q from
0.5 to 0.25, especially when there is less noise, e.g., NR = 0.
In Figure 3, we can see that ITQ+ performs stably good when
q ∈ [0.75, 1.25] where the outliers affect ITQ+ much less and
that a model which can well fit to the normal data is learned.

Secondly, we can observe that the performance-vs-q curve
behaves differently at different noise levels. Specifically, giv-
en a small NR, e.g., NR = 0, ITQ+ seems more sensitive to
q when q < 1, because the the performance changes dramat-
ically when varying q in this range. On the other hand, given
a large NR, e.g., NR = 5%, ITQ+ becomes more sensitive
when q > 1. The reason is analogous to our analysis in the
last paragraph. When there is little noise, the primary target
of ITQ+ is to fit the normal data. In this case, the performance
may degrade rapidly if q is too small. On the other hand, as
a result of the increasing noise, the primary target of ITQ+
becomes to suppress the influence of noise. Thus, increasing
the value of q when q > 1 leads to much worse performance.
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(a) SIFT1M, p = 2
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(b) SIFT1M, p = 1.5
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(c) SIFT1M, p = 1
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(d) GIST1M, p = 2
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(e) GIST1M, p = 1.5
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(f) GIST1M, p = 1

Figure 4: Performance for `p-norm similarity search.
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(a) p = 2, q = 1.5
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(b) p = 2, q = 1
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(c) p = 1.5, q = 1
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(d) p = q = 1

Figure 5: Convergence study, SIFT1M, 64 bits.

3.4 `p-norm Similarity Search
In this subsection, we will demonstrate the effectiveness of
ITQ+ for `p-norm similarity search. For ITQ+, we can set the
parameter p depending on the specific task and we set q = 1.

We consider the `2-norm (Euclidean distance), `1.5-norm
and `1-norm (Manhattan distance) similarity search because
of the space limitation. The recall curves of ITQ+ and ITQ
on both datasets with different code lengths for three tasks are
plotted in Figure 4, respectively. Here, we use `2-norm as the
reference as ITQ is designed for this task. We can observe
that ITQ+ has stable performance on different tasks where-
as ITQ performs much worse on other two tasks than on `2-
norm task. For example, the Recall@1000 of ITQ drops from
0.651 for `2-norm to 0.474 for `1-norm on SIFT1M with 64
bits. Consequently, the performance gap between ITQ+ and
ITQ becomes much larger when we change p from 2 to 1.5
and 1. This result demonstrates that ITQ+ can well support
the `p-norm similarity search but ITQ cannot handle the tasks
excluding `2-norm search. In fact, as we have shown in Fig-
ure 1(b), the learning algorithm of ITQ may unavoidably lead
to larger distortion with more iterations since it adopts `2 loss.

3.5 Convergence Study
We have theoretically proved that Algorithm 1 leads to non-
increasing objective value. Now, we empirically investigate
its convergence property by conducting the experiment on
SIFT1M with 64 bits. Because Algorithm 1 is designed for
the general `p,q-norm loss, we assign different values to p and
q. The objective function value in Eq. (3) w.r.t. the number
of iterations with different settings are plotted in Figure 5. As
can be seen, the objective value decreases steadily with more
iterations and can achieve a nearly stable value within less
than 50 iterations, which validates the effectiveness of Algo-
rithm 1. For a fair comparison, we terminate the algorithm
after 50 iterations in all experiments as suggested by ITQ.

4 Conclusion
In this paper, we have presented an enhanced ITQ algorith-
m, termed ITQ+, which changes the `2,2-norm loss to a more
general `p,q-norm loss. The benefits are twofold. On the one
hand, the algorithm becomes more robust to the noise, which
potentially makes ITQ+ better suited to search similarity in



the real-world data. On the other hand, promoting to `p,q-
norm loss allows ITQ+ to handle various applications, where
different distance measurements are requested. The major
technical challenge comes from minimizing the new `p,q- loss
function, which is a non-smooth and non-convex optimiza-
tion problem. To solve this orthogonality constrained `p,q-
norm minimization problem, we propose an efficient algo-
rithm and rigorously prove its convergence. Comprehensive
experiments on two benchmarks show that ITQ+ performs
significantly better than ITQ, and demonstrate that ITQ+ is
robust to noise and works well for `p-norm similarity search.
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